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Abstract
Stocking (19€9) discovered a problem with the LOGIST estimation
procedure. The automatic procedure in this program produced different item .

parameter estimates when the true item discriminations were used as starting
values for the iteration procedure than when the default starting value of one
for the item discriminations was used. Wwhen a straight run to convergence was
rerformed, the different initial starting values converged to the same item
parameter estimates.

This study investigated several methods for improving the automatic
procedure. wheﬂ these methods faile'( to give the improvement necessary,
several methods were tried to obtain the same results as the run to
convergence in a shorter amount of computer time. A method was devised that
takes much less time and gives nearly as good, and in some cases better,
estimates as estimates obtained from running to convergence. This method
involves adding a step to get better initial item parameter estimates for the
automatic procedure. 1In this step, the abilities are grouped very coarsely
and the jitem parameters and the grouped abilities are estimated iteratively,
alternating back and forth between items and abilities until the maximum
difference between the estimated item characteristic curves is less than some

criterion.

The new procedure gives item parameter - stimates that are closer to the
true values than the current 4-step method does. However, there is a definite
nonlinear relationship between the estimated item parameters for the two
methcds after the parameters have been linearly transformed to the same scale.

Consequently, in an ongoing series of calibrations, switching to this
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procedure from the cld procedure will produce a discontinuity in the parameter
estimates in the same manner as would be caused by switching from LOGIST to
BILOG.

The effects of putting a beta prior on c were also investigated. The
results were not conclusive. &n option to put a beta prior on ¢ was added to
the program.

This new method has been incorporated into a new version of LOGIST

called LOGIST7.

o
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Introduction

The compvter program, LOGIST (Wingersky, Patrick and Lord, 1988)
estimates the item parameters and the examinee abilities for Birnbaum’s 3~
parameter logistic item response theory model using Newton’s method for
solving the joint maximum likelihood equations. This is not an easy
estimation problem. Newton’'s method requires some initial starting values for
the parameters and iteratively solves for corrections to these values to
obtain the solution to the joint likelihood equations. 1In this problem.there
are N+3n unknowns, where N is the number of examinees and n is the number of
items. To avcid invercting an N+3n matrix, the procedure is broken into stages
with each stage consisting of two parts. In the first part, the item
parameters are held fixed and new abilities are estimdted. In the second
part, the abilities are held fixed and new item parameters estimated.
Originally, the program did a straight run to convergence, where the stages
were repeated until some convergence criterion was met. This was a very slow
procedure that sometimes failed to converge. Over a period of ten years, the
procedure was refined until an estimation procedure, called the automatic 4~
step procedure, was finalized in 1976.

In a research study in 1989, Martha Stocking discovered a problem with
this procedure (Stocking, 1989). For four sets of artificial data, the
program produced different item parameter estimates when the true item
discriminations were used as starting values than when the default starting
value of one was used. However, when the original run to convergence
procedure was used, the two different sets of starting values converged to the

same parameter estimates. This paper explores several methods of correcting
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this problem without resurrecting the problems that the 4-step procedure was
designed to prevent.

The methods tried are

1. Computing the initial a parameter estimates from the conventional
item statistics, the r biserial and the broportion correct.,

2. Running the 4-step estimation procedure twice, for eight steps.

3. Running the 4-step estimation procedure with a prior on the item
discrimination parameter.

4. Running the estimation procedure to convergence with a prior on the
item discrimination parameter.

5. Running the estimation procedure to convergence but speeding the
convergence by extrapolating the item parameter estimates.

6 and 7. Grouping the ébilities for a short initial run tp a loose
convergence criterion to get initial item parameter estimates, and
then running the 4-step procedure. Two methods of grouping were
triea. |

These seven new methods plus the current automatic 4-step procedure and the
original run to convergence method were evaluated using artificial data.

Another issue that has concerned users of LOGIST is the way the program

estimates the lower asymptote parameter when the item response function
becomes asymptotic in a region of the ability distribution where there are few
or no examinees. Occasionally when a group of items is calibrated in two
separate LOGIST runs, each run containing other items, some lower asymptotes
will be fixed at a common ¢ value in one run but will be estimated in the

other run. Although in both runs the estimated item response function will
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usually fit the data well, the item parameter estimates are sometimes quite
different. 1In addition, the estimated common ¢ may be different for the two
runs because the group of items used to estimate the common ¢ will be
different. ' his study also explored, using artificial and real data, whether
a prior on the c’s improves the consistency of the item parameter estimates
for the items calibrated in two different LOGIST runs. Putting a prior on ¢

is an eighth new method of estimating the parameters.

The Three Parameter Logistic Model

The item response model used by LOGIST is the Birnbaum three-parameter :
logistic, (3-PL), model. For a dichotomous item, the item response function,
IRF, is the probability of a correct response to an item and is a function of
the examinee’s ability, 8 , and three item parameters describing the item.

The formula for the probability, p,(08) , is

Py(8) =c + (1-c,) / (1+&™2 7451850 (1

where
a; is the item discrimination index which is proportional to the
slope of P,(0) at the point of inflection.

by is the item difficulty which is the point of inflection on the 6

metric.

¢; is the lower asymptote of P,(8) .
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Development of the Current 4-Step Estimation Procedure
Thie 3-PL model has one parameter per examinee and three parumeters per
item, for a total of N + 3n parameters where N is the number of examinees and
n is the number of items. Using joint maximum likelihood, LOGIST estimates
the item and exam’.nee parameters that simultaneously maximize the joint

likelihood function modified for omits

=11 I o, (8,) Y20, (8,) e (2)

kelfwy

where v, is O if item i was answered incorrectly by examinee k, 1 if answered
correctly, and 1/A if omitted. A is the number of response clternatives.

n; is the number of items that examinee k reached. Since the likelihood
function modified for omits is no longer strictly a likelihood function in the
usual sense, it will be referred to hereafter as the criterion function. (It
can, however, be described as a "limited-information likelihood function®
which inherits properties associated with likelihood functions; see Mislevy
and Wu, 1988). The parameters are estimated by setting the first derivatives
of the log of the criterion function with respect to the unknown parameters to
zero and solving these equations using Newton’s method. Newton's method
requires some initia} starting values for the parameters and iteratively
corrects these values to obtain the solution to the joint likelihor ?
equations. To solve for the corrections to all of these unknowns at once
would require inverting an N + 3n matrix. Since this is beyond the capacity
of most computers, solving for the corrections is split into two parts. One
part solves for the corrections to the abilicy estimates. The other part

solves for the corrections to the item parameter estimates. These two parts

2 U
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together are called a stage. In a straight run to convergence, stages are
repeated until the percent change in the criterion function between two
successive stages is less than a user specified criterion. The soiution has
two indeterminant values, the origin and scale of the ability metric. LOGIST
handles this by standardizing the abilities to a robust mean of zero and a
standard deviation of one. The robust mean and standard deviation are
computed using Tukey’s biweight method. (Mosteller & Tukey, 1977). The
standardization is done between the ability estimation part and the item
estimation part.

A lot of fine tuning was required to overcome some of the problems
encountered with this procedure. One major problem was that, for some data, a
few of the a’s would tend towards infinity. To prevent this, an upper bound
was placed on the a’s. When the abilities were rescaled, this upper limit on
the a’s also had to be rescaled in the same way as the a’'s were rescaled to
avoid a decrease in the criterjon function when the rescaled a’s at the
maximum tried to exceed the maximum and were resec to the maximum. To
understand how this can create problems, suppose the procedure is nearly
converged with some a’s at the upper limit. When the abjilities are estimated,
the items with a at the maximum will be fitted better if the abilities are a
little more spread out. The standardization then pulls the abilities back in,
but also raises the maximum a. Since the a’s at the maximum want to be higher
anyway, they are becoming higher by this effect on the abilities. The
criterion function is increasing, but very slowly. If there are several a’'s
at the maximum, the percent change in the criterion between successive g’ ages

tan take a long time to become less than the convergence criterion.
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Meanwhile, the a’s at the maximum are increasing to a higher value than is
wanted or reasonable.

To control this problem, Frederic Lord devised what has been called the
automatic, or 4-step, procedure used in LOGIST since 1976. 1In this procedure,
the a’s and the abilities only interact twice. In step 1, the a‘s and c’s are
held fixed, while the abilities and b’s are estimated until the percent change
in the criterion function between two successive stages is less than a loose
convergence criterion. 1In step 2, the abilities are held fixed, and the a’s,
b’s, and c’s are estimated. In the third step, again the a‘s and c’s are held
fixed, and the abilities and b‘’s are estimated. In the fourth step, the
abilities are again held fixed, and the item parameters are estimated. The
convergence criterion is reduced for each step, starting with 200% for step 1
to .2% for step 4. In steps 1 and 3, the robuat_atandardization is used. 1In
steps 2 and 4, the standardization sets a truncated mean and standard
deviation of the abilities to zero and one respectively. This method was
tried on some artificial data and produced acceptable results. The important
point of this procedure is that the abilities and the a’s only interact twice.
The a’s aren’t given a chance to increase withou: limit and the maximum a is
not changed by the standardization. The initial a‘s are set to a constant.
Different starting values for the constant converged to the same final
parameter estimates.

This method seemed satisfactory until the Stocking study found problems
using some extreme datasets. For some of these datasets, the 4-step procedure
converged to different parameter estimates depending upon different starting

values for the item parameters. In particular, she discovered that setting

2
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the initial a‘s to the true values gave different and better results than
using the default value of one for all of the a‘’s. Since LOGIST isn’t run to
convergence, it is not surprising that starting at the true values gives
better rasults. However, when LOGIST was run to convergence, the parameter
estimates obtained with the initial a‘s set to the true a’'s agreed with the
parameter estimates obtained with the initial a‘s set to a constant. The
difference between the estimates for the automatic procedure with the default
starting value for the a‘s and the estimates for the run to converxgence is
sufficient to warrant investigating ways to improve the current LCGIST
procedure.

Another problem with the estimation procedure has been the difficulty of
estimating the lower asymptote, c, for easy items or not very discriminating
items where c :: poorly determined because there are few to no examinees in
the region where the IRF becomes asymptotic. 1In the development of LOGIST,
several methods were tried to obtain reasonable estimates of c for these
items. The method implemented was to fix the c‘s at a common c value for
items where b-~(2/a) is less than some cut-off criterion and estimate a common
¢ for all items with c fixed. The value of b-(2/a) is the ability where the
item response function approaches the lower asymptote. The common ¢ value is
estimated using Newton’s method but only in the second step of the 4-step
estimation procedure. Thus the common ¢ value depends on the other items in
the run that had their c’s fixed at the common value. There are two problems
with this procedure that are noticeable when two separate calibrations have
items in ,ommon and a comparison is made of the estimated parameters for the

common items. The problems are: 1) the common c value depends on the other

1o
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items fixed at the common value and may be quite different for two different
runs; 2) the criterion value for determining whether c is fixed or not
creates a discontinuity. 1In one run an item may have its c fixed, and in
another, because the b-(2/a) happeﬂs to be slightly higher, the c may be
estimated for this item. The fit of the item response curve to the data may
be approximately the same in ‘' 'th cases although the parameter estimates may
differ.

Methods

Seven methods were tried to improve the LOGIST 4-step procedure results
without the expense of running to convergence. fhese methods are outlined in
the introduction on page 5. The first three methods tried to improve the
automatic procedure. These methods were: 1) computing the initial a parameter
estimates from the conventional item statistics; 2) running the four step
procedure for eight steps; and 3) putting a log normal prior on the a‘s and
running the 4-step procedure. When none of these gave as good results as
running to convergence, several modifications were tried to increase the speed
of running to convergence. These additional methods were: 4) adding a log
normal prior to the a‘s and running to convergence; 5) adding extrapolation to
speed up the run to convergence; and 6) & 7) obtaining initial item parameter
estimates by running to convergence with the examinees grouped into a small
number of groups and then running the 4-step procedure. Finally, an eighth
method put a prior on ¢ to improve the poorly estimated c’s. Each procedure

will be discussed in detail.
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1) Using Conventional Item Statistics to Get Initial a Estimates.

Stocking showed in her study that using the true item discrimination
values as starting values for the a’'s gave better parameter estimates than
using the default value of one for the a’s. This suggests that better initial
starting values for the a‘s would improve the final item parameter estimates.
Lord (1980) gives approximations to the item discrimination and difficulty
parameters, provided c¢ is 0, that are computed from the r-biserial and the
observed proportion correct. Schmidt (1977) gives Urry’s modifications to
these equations to correct for guessing. These formulas hold only if the unit
of measurement for 6 has been chosen so that the mean of © is O and the
standard deviation is 1 and 0 is normally distributed in the group tested.

In addition, the approximations can fall short of accuracy when the test score
x and 0 have differently shaped distributions.

The initial estimate for a is given by the following formula

Pie (3)

ai=
1-ple

where

_ PioyPin (4)

P~ T e v,y

ph is the point biserial correlation between the binary item score and
the latent trait, ® . The point kiserial is attenuated by guessing. To the

extent tnat the number-right score x is a measure of ability 0, Pix. the
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product-moment or point-biserial correlation between item score and x, can be
used as an approximation to ph

P is the correlation between the normally distributed dimension
uncderlying the item and the latent trait 8 .

¢(y;) is the ordinate at 1y, that cuts off the area P; of the
standardized normal curve.

P{ is the observed percent correct.

_ Pi-cy
i 1"‘C1

is the observed percent correct adjusted for guessing.
An upper bound of 1 was placed on the computation of the biserial correlation.
In addition, the initial a estimates were not allowed to exceed the maximum

value for a specified by the user.

2) Eight-Step Procedure

Since running the program to convergence gives the same results
regardless ot the starting value for the a’'s, will simply running the 4-step
procedure for eight steps give acceptable results? Instead of repeating the
4-step procedure twice, steps 1 and 2 were repeated three times and then steps
3 and 4 were executed. This was done to avoid running to the tight
convergence criterion of steps 3 and 4 in the middle of the estimation

procedure.

3 & 4) Log normal prior on a for the 4-step and the Run to Convergence.
In Stocking’s study, the problem seemed to be primarily with the
estimation of the a’s. Consequently, a prior on the a’'s might improve the

estimation of the a’s in the 4-step procedure. The prior tried was a

16
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‘floating’ log normal prior as is used in the BILOG estimation program
(Mislevy and Bock, 1983). The parameters of the prior are u, and o, , the
location and dispersion. The o0, can be specified by the user or set to a
default value of .5. ju, is the mean of the log a’'s and is recomputed at the
end of each stage or it can be specified by the user and fixed. The criterion

function in equation 2 becomes

-1 (lna-p, 2
Le=(—1_e 2 % ) (5)
o,/2%

The i, is adjusted by the standardization of the abilities at the end of each
stage. This method was tried with the 4-step procedure and with the run to

convergence method.

5) Convergence method with extrapolation

As this study progressed it became obvious that running to convergence
produced the best results in terms of reproducing the true parameters.
However, running to convergence has always been a slow and expensive
procedure. In addition, there is sometimes the problem of a’s becoming
unreasonably large in running to complete convergence. Consequently, several
modifications of running to convergence were tried. The first was using
extrapolation on the item parameters to speed convergence. The same
extrapolation method was used as had previously been used in the 4-step
procedure on groups of b’s, only now it was applied individually to the a’s
and c’'s as well as to the b’s. A logit transformation was done on the ¢’s and

a log normal transformation was done on the a’s before extrapolation. After

17
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extrapolation, the parameters were transformed back. No extrapolation was
attempted unless the absolute change in the item parameter was monotonically
decreasing. Each item parameter was extrapolated independently of the other
parameters for that item. An absolute limit was put on the amount any
parameter could change by extrapolation. In addition, no parameter could
change by more than nine times the amount that it changed in the previous
stage. Extrapolation was done every four stages after the maximum difference
between the item response functions between two successive stages had become
less than .01 and, if no prior was placed on c, the common c value had

converged.

6 and 7) convergence Method with Grouping

Two other methods were tried that involved grouping the abilities after
the first estimation of abilities and running to convergence using the grouped
abilities. The estimated item parameters were then used as initial'starting
values for the 4-step procedure. The reason for running the 4-step procedure
after the grouped run to convergence is that the grouping tends to produce
s8lightly underestimated a‘s. Two different groupings were tried. One grouped
the examinees into 100 centiles with an equal number of examinees in each
group. This results in groups with a narrow ability range in the middle of
the ability distribution but with a wide ability range in the taiis of the
distribution. The other grouped the examinees into 100 equally spaced groups
between -3 and 3 on the ability scale. Ability estimates outside of this
range were put in the appropriate extreme group. This grouping allows for

more groups in the tails of the ability distribution.

ot
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8) Prior on ¢

For some items, the item response function becomes asymptotic in a
region of the ability distribution where there are few or no examinees. The
ability level where the IRF becomes asymptotic is approximately equal to
b-(2/a). After the c’s have been estimated for two stages, for items with
b-(2/a) less than some specified ability level below which there are few
examinees, LOGIST fixes the c at a common ¢ value that is then estimated by
maximum iikelihood. Thus, for items with c fixed, the c depends on the other
items that are also fixed.

Another method of controlling the estimation of ¢ for items where there
is little information about c contained in the data is to adopt a Bayesian
approach of controlling c by the imposition of a prior distribution. This
prior distribution formally incorporates our beliefs about reasonable values
of the c parameter. The prior distribution used was a beta function as

implemented in BILOG (Mislevy and Bock, 1983). The beta function is

1 8-1(1_~yB-1
B(a,B)c (1-¢) (6)

The parameters a and f are determined as follows. The mean of the beta

distribution is set equal to the mean of the c’s, ¢ . Thus,

=c (7)

The weight that is given to the prior can be expressed in terms of the number

in a hypothetical group of low ability examinees, N._

et
¢

O
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a+P=(N__+2) (8)
Solving these two equations for alpha and beta gives
a=(N_+2)T (%)
B=(N_+2) (1-0) (10)

N. controls how tight or loose the prior is. For future reference, define

N!o=N_,+2 . T can be computed at the end of each stage or fixed at some user
specified value. If it is computed, then the poorly determined c’s will
depend on the c’s of the other items included in the calibration. If ¢ is
fixed, the poorly determined c‘s will depend on the value assigned to it. For
any item, the estimated c will depend upon the prior to the degree that there
is little information in the data with which to estimate c.

Convergence Criterion
It was necessary to change the convergence criterion twice during these

runs for the methods that involved running to convergence. The original
convergence criterion of some minimum percent change in the criterion function
created problems. For three of the datasets used in Stocking‘’s study, in the
straight run to convergence after forty stages the criterion function was
still changing by more than three percent, and the decrease in the percent
change between stages was very small. For example, for one of the datasets
the percent change in the criterion function for stages 48 to 54 were 3.61,

3.51, 3.44, 3.28, 3.20, 3.08, 3.04. The reason for this extremely slow

convergence is that there were several items with a at the maximum a. The

LI
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standardization would increase the maximum a by a small amount. The a‘s at
the maximum would then increase to the revised amount, and so the criterion
function would increase by a small amount. This problem was not removed by
putting a prior on a. For the same test with a prior on a, the percent change
in the criterion function was 1.46, 1.34, 1.22, 1.14, 1.13 for stayes 48 to
54.

Although the criterion function was increasing by more than the
convergence criterion, the estimated item response functions were changing
very little in the region of ability where the examinees were located.
Consequently, the convergence was redefined to be the maximum change between
the fitted IRF‘s within a stage. This change between the fitted IRF's was
computed for theta values of -2, -1, 0, 1, and 2. The procedure was
considered converged when the maximum difference between the estimated IRF's
was less than .0005. A couple of datasets had problems with this criterion as
the change within a stage would compensate for the adjustment by
standardization so that the change across stages would be extremely small but
the change within a stage would be larger than the convergence criterion. The
final convergence definition chosen was that the maximum difference in the

IRF'8 across two stages was less than .0C05.

Data
Since the problems with LOGIST were discovered in Stocking‘s study, all
methods used in this paper were tried on the four sets of artificial data used
in that study. Each test contained 100 5-cnoice items and were taken by 3000

examinees. The true c’'s for all items were set to .15. This value was chosen

21




ERIC

Aruitoxt provided by Eic:

Improvements to LOGIST

19

based on the observation that in practice c’s are usually estimated as smaller
than the probability of a correct answer based on random guessing. The true

b's were chosen randomly from a rectangular distribution with a range of -2.5

to 2.5. The true a‘s were chosen to be within the range of .5 to 2.5, but with
different corfelations with the true b’s for each test.

These correlations varied as follows:

1) For test S1, the population correlation between true a and true b was
+.8, the sample correlation was +.76.

2) For test S2, the population correlation was ~.8, the sample correlation
was -.76.

3) For test S3, items with difficulty less than zero had a population
correlation with item discrimination of -.8. Items with difficulty greater
than zero had a population correlation with item discrimination of +.8. The
overall sample correlation was .08.

4) For test S4, items with difficulty less than zero had a population
correlation with discrimination of +.8, and items with difficulty greater than
zero had a population correlation with discrimination of -.8. The overall
sample correlation was .00.

These correspond to the datasets labeled C1 through C4, respectively, in
the stocking study.

A calibration sample of 3000 simulees were chosen from a rectangular
distribution of true ability from -2.5 to 2.5. The population mean and
standard deviation were O and 1.44, the sample mean and standard deviation
were -.01 and 1.46. A separate criterion or cross-validation sample of 3000

simulees was chosen from the same dist:ibution and had a sample mean and

P
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standard deviation of -.03 and 1.45. Item response data for each test were
generated for each simulee in each sample. For the calibration sample, these
data were used to obtain the item and ability parameter estimates from LOGIST.
For the cross-validation sample, these data were used to obtain only ability
estimates using the item parameters estimated in the LOGIST run on the
calibration sample.

In addition to this data, four more sets of data were generated to
simulate real tests by first calibrating actual test data on LOGIST6
(Wingersky, et al, 1988) and then using the estimated parameters as the true
parameters to generate item responses. Since there were actual responses
associated with the true abilities, items not reached by the real examinee
were considered not reached for the simulated examinee. Since LOGIST ignores
‘not reached’ items, degradation in the calibrations due to not reached items
resulting in a sl orter test will appear in the results. The total sample of
examinees was split into two random halves. One half was used to generate the
item responses for the calibration of the items, the other half was used to
generate the item responses for the validation sample.

The four real tests used were:

1) Rl, a GRE quantitative test containing 60 items and taken by 2264
examinees.

2) R2, an SAT math test plus equating section containing a total of 85
items and taken by 3015 examinees.

3) R3, an SAT verbal test plus equating section containing a total of

130 items and taken by 2744 examinees.

4) R4, a TOEFL section containing 58 items and taken by 2915 examinees.

oo
Lo




O

ERIC

Aruitoxt provided by Eic:

Improvements to LOGIST

21
In comparison to tests S1 to S4, the correlations between the true a and

b parameters were .63 for R1l, .62 for R2, .01 for R3, and .37 for R4.

Analysis

Each of the eight datasets were calibrated using the eight new
procedures, the 4-step procedure, and the run to convergence. The estimated
parameters were transformed to the scale of the true parameters using the
method which minimizes the squared difference between the two test
characteristic curves, as described in Stocking.and Lord (1983). The -
transformed item parameter estimates were then used to estimate abilities for
the validation samples.

Because of the numerous methods involved, the following abbreviations
were used for the different methods. The 4-Step procedures are referred to as
the automatic procedures, as the default automatically used by the program was

the 4-Step procedure.

Abbreviation
or code Method
4 RAutomatic 4-Step procedure currently used in LOGIST.
r Automatic 4-Step procedure where the initial a‘’'s are
computed from the r-biserials and observed
proportion correct.
A Automatic 4-Step pror ‘dure with a log normal prior on

the a’s.
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8 Automatic 8-Step procedure. This is a procedure with
steps 1 and 2 of the 4-Step procedure repeated
three times and then steps 3 and 4 of the

automatic procedure are done.

b Run to convergence with a log normal prior on a.
c Run to convergence.
E Run to convergence with extrapolation of the

item parameters.

= First a run to convergence with extrapolation is done
with the abilities grouped into 100 intervals of
equal width between -3 and 3 on the ability
scale. This run is then followed by the
4-step procedure.

% First a run to convergence with extrapolation is done

with the abilities grouped into 100 intervals
where the abilities are sorted and grouped into
centiles with one percent of the examinees in
each group. This run is then followed by the
4-step procedure.

P Prior on c was added to the run to convergence with
the abilities grouped into 100 intervals of
equal width between -3 and 3, followed by the

4-step procedure.

o
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The estimated item parameters were evaluated by 1) comparing the
estimated parameters to the true parameters, 2) comparing the fitted item
response functions to the true item response functions, and 3) comparing
atjlities estimated with the estimated item parameters to abilities estimated
with the true item parameters on a separate validation sample.

‘The following statistics were computed for comparing each estimated jtem
parameter to the corresponding true item parameter for the a‘s, b’s and c’s.
1) Th. correlation between the estimated and the true parameters. For the
c‘s, no correlation was computed for the S tests since all of the true c’'s
were equalf 2) ‘The bias, which is the estimated parameter minus the true
parameter, averaged over all items. 3) The root mean square error, RMSE,
which is the square root of the average squared differences between the
estimated and the true parameters. These statistics for all of the methods

for all of the tests are given in Table 1.

Since different combinations of a, b and ¢ can produce similar item
response functions in the range where there are examinee abilities, comparing
the estimated and true item response functions in this range may be more
meaningful than comparing the individual estimated and true tem parameters,
The following statistics comparing the estimated item response functions to
the true item response functions were computed: 1) ASD, the unweighted average
signed deviation between the two curves, 2) RMSD, the snquare root of the

average unweighted squared deviation, 3) BIAS, the average weighted signed
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deviation and 4) WRMSD, the square root of.the average weighted squarec
deviation. ASD and RMSD were computed over equally spaced abilities between
-2.5 and 2.5 for the S tests and between -3 and 3 for the R tests. The
smaller range was used for the S tests since the true abilities spanned only
this range. BIAS and WRMSD were computed over equally spaced abilities between
-3 and 3 and were weighted by the expected number of examinees for the
appropriate segment of the ability distribution assﬁming the abilities to be
normally distributed with a mean of 0 and a standard deviation of 1. This
gives four statistics for each item. The¢ individual statistics were plotted
by item, where the items were ordered by true difficulty, to see whether
systematic differences occurred at different ability levels. These plots were
too numerous to include in this paper, but are available from the author.

The mean and standard deviation of each of these statistics were computed
for each estimation method for each test. Figure 1 contains plots of the means
for the automatic methods plus the run to convergence method. Figure 10
contains the plots of the means for the convergence methods. The scale for
the y-axis in Figure 10 is half that in Figure 1. These figures contain four
plots, one plot for each statistic. Each plot contains the means for each
test with a dotted . ine separating the tests and the test identification
written below the x-axis. A point is plotted as a bo: containing ‘.ie code for
the method with lines extending one standardlerror of the mean from the center
of the box.

Another criterion for evaluating the methods is to compare abilities
estimated with the estimated item parameters to abilities estimated with the

true item parameters. Comparing these two estimated abilities removes from
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the comparison any error caused by the maximum likelihood estimation. The
abilities were estimated on separate validation samples. The residuals
between these two estimated abilities were grouped on the true abilities into
intervals of .2. The median residual for the group and the lower and upper
limits of a non-parametric two tailed 5% confidence band around the median,
based on a method by David (1981), were plotted.

Figures 2 through 9 contain the plots of the medians for the automatic
methods and for the run to convergence with each test in a separate figure.
Figures 11 through 18 contain the plots for the convergence methods. The
scale for the y-axis in Figures 11 through 18 is half the scale for the
y-axis in Figures 2 through 9. For each ability group, the medians for the
methods being compared are plotted in a separate position on the x-axis. The
symbol for the method plotted is printed just below the x-axis. The ability
groups are separated by a dotted line with the true ability printed beneath
each group. The number of simulees in each group (N) is also printed. Due to
this spreading of the points, the plot is broken into three gections. The top
section contains the low abilities, the middle section contains the middle
abilities, and the bottom section the high abilities. For the S tests, the
groups were of uniform size, but for the R test the groups in the extremes
were quite small. No confidence limits were computed if there were less than

four examinees in a group.
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Results
The discussion of the results will be broken into two sections. First the
automatic methods will be compared to each other and to the run to
convergence. Then the convergence methods will be compared to the run to
convergence. The run to convergence was used as the criterion to judge the
other methods since, for the most part, this method gave the best parameter

estimates. Each method will be evaluated separately.

Method 4, the current four step procedure.

How bad is the current 4-step procedure (Method 4) that has been used
extensively since 1976 compared to running to convergence (Method C)?

The statistics for comparing the item parameters for these two methods
are given in Table 1. For the S tests, Method C gave better results than
Method 4 with a few exceptions. For the R tests, the statistics for the two
methods were nearly the same. Method C gave higher correlations for the a’'s
for two of the R tests, but slightly lower correlations for the other two.
The largest differences between the two methods were for Rl. In looking at
these statistics, Method C is not much better than Method 4 for tests that
simulate real data, the R tests.

Figure 1 shows that Method C gives better fitting item response functions
than Method 4. Except for the ASD, the difference between Method C and Method
4 was a lot less for the R tests than for the S tests. That the difference
between the two methods was greater for the ASD than for the BIAS for the R
tests indicates that Method 4 had problems in the extremes of the ability

distribution. The plots of the statistics ordered by difficulty confirm this.
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This is also confirmed by Figures 2 through 9, comparing the estimated
abilities. Method 4 is the first procedure in a group, Method C the last.
For the S tests, Method C gave definitely better results. For the R tests,
the results for Method C were about the same or only slightly better than the
results for Method 4. Rarely, as in R2, for abilities at -1.5 and -1.3,
Method C did slightly worse than Method 4. For the R tests, throughout the
middle ability range between -1 and 1, Method C and Method 4 agreed very well.
Overall, the Method 4 results were closer to the Method C results for the R

tests than for the S tests.

Method r, using conventional item statistics.

Does computing the initial a estimates from the conventional item
statistics (Method r) give better estimated parameters than using the default
values of 1 for the initial estimates?

In the comparison of the estimated item parameters given in Table 1,
Method r gave lower correlations than Method 4 for the S tests. However, for
the R tests the correlations were slightly higher. For the bias and RMSE,
Method r gave higher values than Method 4 for the S tests, but lower values
for the R tests. The detailed plots by item in the supplement to this paper
show that Method r gave poorer fitting IRF's for the easy items than the other
automatic methods. In Figure 1, comparing the item response functions, except
for tests S3 and $4, Methocd r produced better fitting IRF‘s than the other

automatic methods. For the R tests, Method r~gave almost as good results as

Method C.
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In the comparison of ability estimates, for the S tests, Method r gave
very poor lower ability estimates compared to the otner automatic methods.
However, for the R tests, again Method r gave better ability estimates than
the other automatic methods, but not as good as Method C. The reason for this
discrepancy between the results for the S tests and the results for the R
tests is that using the conventional jitem statistics to approximate the item
characteristic curve parameters assumes that the abilities are normally
distributed. This was approximately true for the R ﬁests, but was not true
for the S tests, where the abilities have a rectangular distribution.

Although Method r gave better parameter estimates than Method 4 for the R

tests, it gave worse parameter estimates for the S tests.

Method A, prior on a

Stocking (1989) found that the main problem in the estimation procedure
seemed to be with the a parameters. Would the estimated parameters behave
better if the a‘’s were controlled by a log normal prior with the mean
estimated and the variance fixed? The mean of the log normal prior was set to
the mean of the log of the a‘s at the end of each stage. The standard
deviation was fixed at .5 at first. On the first dataset calibrated, several
a‘s tried to go to infinity, so the value was reduced to .4. This value kept
all of the a‘’s within bounds for all of the tests except R4. For this test, a
value of .3 was necessary to prevent any a‘s from approaching infinity.

In comparing the item parameter estiwmates, the item regsponse functions and

the estimated abilities, the Method A results were nearly identical to the
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results for Method 4. The lack of improvement in results does not warrant the

additional assumptions and subjective decisions required by the prior.

Method 8, eight steps.

Running the four step procedure for four more steps (Method 8) should
give better item parameter estimates without the cost of running to
convergence. Are the improved item parameter estimates close to the Method C
estimates? Table 1 shows that the item parameter estimates were improved over
Method 4 estimates. Figure 1 shows that Method 8 gave slightly improved
results over Method 4, but still not nearly as good as Method C for the S
tests.

In conclusion, Method C generally produced better item parameter
estimates than any of the automatic methods. The improvement in the parameter

estimates was greater for the S tests than for the R tests.

Convergence Methods

While running LOGIST to convergence gave better results than any of the
automatic procedures, it was approximately twice as slow as the 4-step
procedure and had the problem of some of the a‘s tending towards infinity. A
comparison of the execution times for Method 4 and the convergence methods is
given in Table 2. Table 2a gives the execution times. Table 2b expresses the
times in terms of the percent of the time for Method 4. Attempts to increase
the speed of Method C included extrapolation, grouping the abilities, and
putting a prior on the a‘s. 1In total, there are six convergence methods,

Methods C, E (extrapolation), = (grouping with equal interval width), %

.~
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(grouping into percentiles), b (prior on a), and P (prior on Cc). Methods C,
b, E, = and % will be evaluated in this section. Method P will be evaluated

in the following section.

The runs to convergence for the S tests both with and without a prior on
the a's used the percent change in the criterion function as the convergence
criterion. The runs to convergence with and wighout a prior on the a‘'s for
the R tgsts were run with the convergence defined by the maximum change within
a stage between the fitted IRF’'s computed for abilities at -2, -1, 0, 1, and
2. The run to convergence with extrapolation and the two grouping methods
were run with convergence defined as the maximum difference between the
estimated IRF‘s from one stage to the next. The convergence criterion was

.0005.

Method E, extrapolation of item parameters.

Extrapolating the item parameters (Method E) improved the speed of
convergence over Method C and produced nearly identical results to those for
Method €. However, for most of the tests, the procedure was slower than

Method 4. This is shown in Table 2.

Method b, running to convergence with a prior on a.
Running to convergence with a log normal prior on the a‘s (Method b) did

not produce as good item parameter estimates as those from Method C. This is
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shown in Table 1 and Figure 10. The ability estimates were also not quite as

good. The prior did not improve the speed of convergence.

Methods = and §&, grouping examinees.

These two grouping methods get initial values for the item parameters by
grouping the abilities into coarse groups and running to convergence ., The
four step procedure is then run to correct for underestimation of the a‘s
produced by the grouping. First these methods will be compared to Method C
and then they will Le compared to each other.

In comparing the item parameter estimates, grouping gave generally
slightly higher correlations between estimated and true parameters. Grouping
slightly increased the bias in the a‘s for the S tests and slightly decreased
the bias in the a‘’s for the R tests. Grouping decreased the RMSE for the b‘s
and c’s. In comparing the item response functions in Figure 10, for most of
the tests grouping improved the results compared to Method C. 82 was an
exception; grouping gave slightly worse results. Compared to Method C,
grouping improved the lower ability estimates for tests S2 and S3, markedly.
However, for 82, grouping did not produce high ability estimates that were as
good as those produced by Method C. In comparing Method = to Method %, Method
= gave slightly better parameter estimates in most cases.

For five of the tests, grouping ran in considerable less time than Method
4, as is shown in Table 2. However, for one of the tests, grouping increased
the time by 26 percent.

Since Method = produced nearly as good or better results than Method C

in less computer time, Method = has been incorporated into LOGIST. One can

34
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think of this method as running a step 0, which is a run to convergence with
the examinees grouped into 100 intervals from -3 to 3 on the basis of the
first maximum likelihood ability estimate. This step 0 gives initial item

parameter estimates for the 4-step procedure. However, this step 0 is not

without its problems. There is still the problem with a’s restricted to the

maximum value slowly increasing because of the standardization and causing the

step to take a long time to converge. Since step O is simply to get good

initial parameter estimates, it has been restricted to forty stages in length.

This was more than enough for all of the tests run in this study to converge.
Prior on ¢

Having chosen a method that gives good parameter estimates, (i.e.

Method =), can the estimates for items where the IRF reaches a lower
a;ymptote in a region of the ability distribution where there are few to no
examinees be improved by putting a beta prior on the c’s? For these items, at
the end of the third stage of step 0, Method = fixes the c for the remaindas
of Step 0 at a common c value if b-(2/a) is less than some criterion. The c’s
for all items are estimated again in stages 2 and 3 of step 2. At the end of
stage 3 of step 2, the c’s for items with b-(2/a) less than the criterion are
fixed at a common c. The criterion used in all of these run: was -4. The
common c is estimated and depends on the other items with c fixed.

The program using Method = was modified to put a beta prior on ¢ with
the mean of the prior either estimated or held fixed. All datasets were run
with a prior on the c with the mean of the prior estimated and with Aﬂ; at
20. NI. controls the amount that the prior controls the c estimates. A

large value for AﬂL will tightly control the c’s; a smaller value will give
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the c’s more freedom. 1In lookiag at four sets of real data, a value of 20
gave a standard deviation for the beta distribution close to the observed
standard deviations of the estimated c’s.

In Figure 10 containing the plots of the average IRF statistics, it can
be seen that the prior on c (Method P) improved the estimated parameters for
tests S2 and S3. For the other tests, particularly for R1l, the estimated
IRF's were worse.

In Figures 11 through 18, the residual ability plots, the point
corresponding to a prior on c¢ is the last point in each group. It should be
compared with the point preceding it for Method = . For S1, the prior
produced higher residuals for the lower abilities, although it reduced the
residuals for the higher abilities. However for $2 and 83, the prior
dramatically improved the residuals for the lower abilities and slightly
improved the residuals for the higher abilities. For S4 the prior gave larger
residuals for the lower abilities. For R1l, the prior gave larger
residuals throughout the ability range. For R2 and R3 the prior improved the
ability estimates. However, for R4 the prior improved the estimates for the
high abilities but not for the lower abilities.

Figures 19 to 26 contain the plots of the residuals for the item
parameters and IRF statistics for Method P and Method =. Aall values are
plotted against the true b-(2/a). The prior should improve the estimates for
the lower values of b-(2/a). The results for no prior on c are plotted in the
first column, for a prior on ¢ in the second. The IRF statistics were
included to show any effect that the different parameter estimates might have

on them. For the S tests, the prior on ¢ improves the estimates for the
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poorly estimated c’s but does not eliminate the scatter for the moderately
poorly estimated c’s. For Rl, the prior on c improved the estimates for the
items with poorly estimated c's but gave worse parameter estimates for some of
the other items. For R2, it improved the c estimates for the really poorly
estimated c’s, but increased the scatter slightly for some of the moderately
poorly estimated c’s. For R4, the prior didn't do as well for the poorly
estimated c’s.

For the comparison of the estimated parameters to the true parameters in
Table 1, compare the line Prior on c to the line immediately above it,
Grouping, Equal Int. On the plus side, the prior on c: 1) improved the
correlations for a,b, and c for all tests except Rl and R4, 2) reduced the
bias and RMSE for a for all tests, 3) reduced the RMSE for b for all tes:s
ekcept Rl and R4 and 4) decreased the RMSE for c for all tests except S1, R1,
and R4. On the negative side, the prior on ¢ increased the magnitude of the
bias in b for all tests except S4, R2, and R4 and increased the magnituce of
the bias in ¢ for all tests except S2, S3 and R2. Except for the bias in a,
all of the statistics for Rl were worse with the prior on ¢ than without.

To understand why the prior on c¢ produced such poor results for Rl, two
more calibrations were done. In one calibration, N.'. was set to 40. This
did not improve the results. In the other calibration, four items with the
highest estimated c’s were removed to see whether these were causing an

unusual distribution of the c’s. The items removed had c’'s greater than ,27.
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In the calibration with four item removed and N, equal to 20, the mean c
went to the minimum of .05 and the procedure stopped. N'. was increased to
40 and t e calibration finished. Calibrating without the four items also
failed to improve the results. However, these two calibrations enable one to
look at the effect of two different N'. 's on the parameter estimates and
the effect of removing a few items on the calibration of the remaining items.

The comparison of these parameters estimates are shown in Figure 27. The
left column of plots compares the parameters eétimated with N'. at 20 to
the parameters estimated with N.. at 40. All pcints are plotted against
the true b-(2/a). With Aﬂ; at 40, the b’s and the c’s were higher for most
of the items. The right column of plots compares the parameters estimzated
with the four items removed to the parameters estimated with all of the items.
Both sets of parameters were calibrated with AﬂL at 40. For most of the
items, both the b‘s and the c’s were higher when all of the items were
calibrated. In contrast, Figure 28 contains the comparison of the parameters
estimated with no prior on ¢ with the four items removed to the param=ters
estimated with no prior on ¢ with all items. The two sets of estim” ted
parameters agree better than whe. the prior on ¢ was used. It is important to
note that if the mean of the prior on ¢ were held fixed, removing the four

items would not have as much effect on the other items.
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Common Item comparison

Frequently the parameters for a block of items will be estimated in two
separate calibrations containing other sets of items. It is not unusual for
an item to have c estimated in one calibration and have the c fixed at the
common € value in the other calibration if b-(2/a) is close to the criterion
for fixing c. In addition, the common ¢ value depends on all items with c
fixed at this value and may be different for the two calibrations. A prior on
the ¢ will remove the discontinuity at the criterion for fixing c. However,
if the mean of the prior on c is estimated, it depends on the items in the
calibrations and may differ for the two calibrations. One way to avoid this
problem is to fix the mean of the prior in one calibration to the estimated
mean in the first calibration. This approach can also be applied to
estimation without a prior on ¢ by fixing the common ¢ value in one
calibration to the estimated common ¢ value in the first calibration.

To evaluate whether the prior on c gave more consistent parameter
estimates, four sets of data were calibrated, both with and without a prior on
¢. Each set were based on responses from two groups of examinees. One group
took Form 1 of the test and an equating section. The other group took Form 2
and the same equating section. Two sets of real SAT data were used; a Verbal
test and a Math test. 1In addition two sets of simulated data were jJerierated.
The true parameters for this simulated data were o.tained from a concurrent
calibration of the real data, where the two forms were calibrated in one
LOGIST run. This put the true parameters for both forms on the same scale.
The real data will be referred to as Math and Verbal. The artificial data

generated from the calibration of the real math data will be referred to as

.
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R2. The artificial data generated from the calibration of the real verbal
data will be referred to as R3. Form 1 for these two tests is the samz as the
R2 and R3 tests discussed in the previous sections.

Each form was calibrated separately. For the artificial data, the
estimated parameters were transformed to the scale of the true parameters
using all items and the transformation procedure developed by Stocking and
Lord (1983). For the real data, Form 2 was transformed to the scale of Form 1
using the commecn items with the Stocking and Lord transformation method.

Form 1 was calibrated with a pricr on c and yithout a prior on ¢. Form 2

was calibrated in four ways: 1) without a prior on ¢ with the common c

estimated, 2) without a prior on ¢ with the common ¢ fixed at the common c¢
value estimated for Form 1, 3) with a prior on ¢ with the mean of the prior
estimated, and 4) with a prior on ¢ with the mean of the prior fixed at the
mean estimated for Form 1.

Table 3 contains the statistics comparing the estimaied item parameters
to the true parameters for the common items for the artificial data for Form 1
and all calibrations of Form 2. "Fix comc" indicates the calibration with no
prior on c where the common ¢ value was fixed at the value estimated in the

Form 1 calibration. The prior improved the results for R2 but not for R3.

Table 4 contains the statistics comparing the item parameter estimates
between Form 1 and Form 2 for the common items. For R2, the prior improved

the correlation, bias and RMSE for b and c. For R3, the prior degraded the
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correlation and bias for c. For Math and Verbal, the results with and without

the prior were nearly the same.

Ingsert Table 4 about here

Fixing the mean of the prior slightly improved the c estimates with the
prior for R3 and Verbal but made almost no difference for the other tests.
With no prior on c, fixing the common c made almost no difference in the
estimates for the two calibrations. 1In replicating item parameters in two
calibrations. the prior either had no effect or gave only a slight
improvement.

The prior on the c improved the results for most of the tests. However,
for Rl the prior on c produced parameter estimates that were not as good as
the estimates produced without a prior. While adding the prior solves some
problems, others are created. Without a prior on c, only the c’s fixed at the
common ¢ were directly affected by the other items in the calibration and
then only by those other items also fixed. With a prior on c and the mean c
estimated, the estimatad c's for most of the items are affected by the other
items. The prior on c does not remove the scatter for moderately poorly
estimated c’'s, where b-{(2/a) is between -2 and -4, that occurs without a pr.or
on c. Fixing the mean c would remove the effect of the particular group of
items being calibrated on the estimates but requires some prior knowledge of
an appropriate value for the mean c. The prior on ¢ also requires specifying

some value for N . Since the prior on ¢ cannot be recommended without
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reservations, a program option was added so that the user could choose whether

or not to put a prior on c.

Comparison of Method = Estimates to Method 4 Estimates

The method that gave the best results in a reasonable amount of computer
time is Method =. This method gives different item parameter estimates than
the current method, Method 4. To give an idea of how different the estimates
are, residuals from a comparison of the estimated parameters from the two
methods are plotted in Figures 29 to 32 for the artificial data and in Figure
33 for the real data. The tests are plotted two tests per page. For each
test, the residuals between the parameter estimates are plotted against the
Method 4 estimated paramete¥s. The residuals for c are plotted against the
Method 4 b-(2/a). The bottom plot contains the test characteristic curves for
the two methods and, for the artificial data, for the true parameters. The
test characteristic curves are scaled to length one. The most noticeable
difference is that the more discriminating items have higher a estimates when
estimated using Method =. This makes the test characteristic curves steeper
for the new method. The plot of the residuals for the b parameter indicates a
nonlinear relationship between the parameters estimated with the new method

and the parameters estimated with the 4-step procedure.
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Conclusions

Stocking (1989) discovered thgt the automatic procedure used by LOGIST
produced different item parameter estimates when the initial a’s were set to
the true values than when the default constant of one was used. However, when
the automatic procedure was bypassed and LOGIST was run to convergence, the
different initial a values converged to the same item parameter estimates.
Running LOGIST to convergence is a time consuming and costly procedure. There
is also a problem with a‘s tending towards infinity. This paper investigated
possible revisions to the program to improve the final item parameter
estimates without the cost of running to convergence.

The method that gave the best results in a reasonable amount of computer
time was a method that obtained initial item parameter estimates by grouping
the abilities into 100 groups between -.! and 3 and running to convergence.

The automatic 4~step procedure was then run with these initial item parameter.
estimates. This method has been incorporated into LOGIST.

The new procedure gave item parameter estimates that are closer to the
true values than the current 4-step method. However, there is a definite
nonlinear relationship between the estimated item parameters for the two
methods after the parameters have been linearly transformed to the same scale.
Consequently, in an ongoing series of calibrations, switching to the new
procedure from the old 4-step procedure will produce a discontinuity in the
parameter estimates in the same manner as would be caused by switching from

LOGIST to BILOG.
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In addition, a prior on the c¢’s was tried to see whether two problems
with the current procedure could be removed. The problems occur when the same
set of items is calibrated with different sets of other items in separate
calibration runs. One problem is that the estimated common ¢ depends on the
items in the calibration with ¢ fixed at the common c. The other problem isg
that an item may be fixed in one calibration because b-2/a was slightly lower
than the cut-off criterion and estimated in-another calibration because b-2/a
was slightly higher than the cut-~off criterion.

The addition of a prior on ¢ :i.proved the parameter estimates for most
of the tests. However, for one of the tests, the prior made the estimated
parameters worse. The beta prior on ¢ with the mean of the prior estimated
makes most of the ¢ estimates dependent on the other items being calibrated.
With no prior on ¢, only the c¢’s fixed at a common ¢ value are dependent on
the other items and then only on the items with ¢ also fixed at the common c.
The prior on c only slightly improved the replicability of the estimated item
parameters when items are calibrated with other tests in separate calibration
runs. Since the results were not conclusive, an option was added so that a
uger could specify that the program estimate the c's with a prior on c with
the mean of the prior either fixed or estimated or the program estimate ¢
without a prior with either the common ¢ value estimated or fixed at a value
specified by the user. More experience needs to be acquired before a clear
recommendation can be made about using a prior on c.

The new LOGIST is called LOGIST7.
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Table 2a
Time in Seconds on an 80386 - 20 MHZ.

Convergence  Grouped Grouped
4 Step Convergence Extrap. Equal Int. Centiles

$1 3477 na* 2851 2108 1994
$2 4467 na* 4782 2171 2235
s3 4654 na¥* 5255 2001 2144
S4 6317 na* 3494 1956 2052
R1 7 : 1479 823 973 953
R2 1563 2292 2042 1732 1672
R3 2512 4545 3324 2781 2854
R& 1504 4708 1493 1187 1157
Table 2b

Time Expressed as Percent of Time for the 4 Step Procedure
Convergence Grouped Grouped

4 Step Convergence Extrap. Equal Int. Centiles
S1 100 na* 82 61 57
s2 100 na* 107 49 50
s3 100 na* 113 43 46
sS4 100 na* 54 30 32
R1 100 192 107 126 124
' R2 100 147 131 111 107
R3 100 181 132 11 114
R& 100 313 99 Fs% g4

na* - These were run on a different computer with a differert convergence criterion.
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F1
F2
F2
F2
F2

F1
Fi
F2
F2
F2
F2

R2
No prior
pPrior on
Mo prior
Prinr on
No prior
Prior on

R3

Table 3

Summary Statistics Comparing Estimated Item Parameters to True Parameters
Common Items in form 1 and Form 2 for tests R2 and R3
Bias

on
c
on
c
on

c,

No prior on

Prior on

No prior on

Prior on
No prior
Prior on

¢,

[+

[+

¢, Fix Comc
Fix Mean

¢, Fix Comc
Fix Mean

Correlation
a b

0.963 0.992
0.961 0.996
0.928 0.996
0.921 0.997
0.929 0.997
0.921 0.997

0.934 0.990
0.940 0.992
0.969 0.991
0.965 0.993
0.969 0.991
0.968 0.993
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0.850
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0.874
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0.875
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0.013
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0.040
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0.013
0.004
0.008
0.005

0.007
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0.086
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0.128
0.093
0.085
0.079
0.079
0.079

0.191
0.165
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0.037
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0.039
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0.054
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0.044
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Table &
Summary Statistics Comparing Form 2 Item Parameters to Form 1 Item Parameters
Common Items in Form 1 and Form 2 for tests R2 and R3, real Math and Verbal

Correlation Bias RMSE
a b c a b c a b c
R2
F2 No prior on ¢ 0.894 0.993 0.704 -0.009 -0.026 -0.010 0.150 0.115 0.054
F2 Prior on ¢ 0.887 0.996 0.817 -0.006 -0.015 -0.003 0.151 0.086 0.035
F2 No prior on ¢, Fix Comc 0.895 0.993 0.697 -0.010 -0.031 -0.013 0.149 0.119 0.055
F2 brior on ¢, Fix Mean 0.887 0.996 0.817 -0.006 -0.013 -0.003 0.150 0.085 0.035
RX
F2 No prior on ¢ 0.886 0.980 0.659 0.000 -0.021 -0.011 0.172 0.293 0.070
F2 Prior on ¢ 0.883 0.984 0.568 -0.007 -0.034 -0.021 0.167 0.282 0.062
F2 No prior on ¢, Fix Comc 0.886 0.979 0.657 -0.001 -0.025 -0.013 0.172 0.298 0.071
F2 Prior on ¢, Fix Mean 0.887 0.985 0.631 0.010 -0.012 -0.006 0.165 0.262 0.054
Math
F2 No prior on ¢ 0.985 0.979 0.880 0.062 -0.016 -0.001 0.120 0.202 0.030
F2 Prior on ¢ 0.984 0.980 0.882 0.064 -0.006 0.005 0.124 0.193 0.026
F2 No prior on ¢, Fix Comc 0.985 0.979 0.882 0.062 -0.012 0.001 0.120 0.199 0.029
F2 Prior on ¢, Fix Mean 0.984 0.980 0.882 0.064 -0.006 0.005 0.126 0.193 0.026
Verbal
F2 No prior on ¢ 0.886 0.984 0.669 -0.048 -0.070 -0.027 0.174 0.264 0.075
F2 Prior on ¢ 0.889 0.989 0.496 -0.044 -0.069 -0.024 0.167 0.231 0.058
F2 No prior on ¢, Fix Comc 0.886 0.984 0.665 -0.04S -0.072 -0.028 0.174 0.265 0.076
F2 Prior on ¢, Fix Mean 0.888 0.983 0.724 -0.035 -0.059 -0.015 0.166 0.236 0.053
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Figure 1. Statistics comparing estimated IRF's to true IRF’s averaged over all items for the
automatic methods and the run to convergence. The lines above and below the box plotted extend one
standard error of the mean from the center of the box.
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Figure 3. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability, Automatic methods and the run to convergence. Test S2.
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Figure 4. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Automatic methods and the run to convergence. Test S3.
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Figure 5. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Automatic methods and the run to convergence. Test S4.
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Figure 6. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters, Median and confidence
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band conditional on true ability. Automatic methods and the run to convergence. Test R1.
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Figure 7. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Automatic methods and the run to convergence. Test R2.
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.Figure 8. Median and 5% two-_tailed confidence band of residuals between ability computed with
estimated .xt'em parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Automatic methods and the run to convergence, Test R3.
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Figure 9. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parametcrs and ability computed with true item parameters. Median and conifidence
band conditional on true ability. Automatic methods and the run to convergence. Test R4.
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Figure 10, Statistics comparing estimated IRF's to true IRF's averaged over all items for the

convergence methods. The lines above and below the box plotted extend one standard error of the
mean from the center of the box.
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Figure 11. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Mediar and confidence
band conditional on true ability. Convergence methods. Test S1.
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Figure 12, Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditior:al on true ability. Convergence methods. Test S2.
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Figure 13. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Convergence methods. Test S3.
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Figure 14. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditiona! on true ability. Convergence methods. Test S4.
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Figure 15. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters, Median and confidence
band conditional on true ability. Convergence methods. Test R1
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Figure 16. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ahility computed with true item parameters. Median and confidence
band conditional on true ability. Converg e methods. Test R2.
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All results plotted against the true b-2/a. Test Sd4.

O

ERIC

Aruitoxt provided by Eic:




1.00 NO PRIOR ON C PRIOR ON C
%o Q
°
S .00 ° 3 0 ® -4:—&15—“—%02&%&0@%&&——(" o
(tI: & o ©° 8 o o %o
° o
-1.00 T T T T
1.00 e
. o ° o o
5 6.00 4—o 2R an%e B _R 008 oo °© ° g o °
v
o ° © go o, ®OR [ So e ® oo‘w&g—%" S °
lD .\ ()
-1.00 T T T — T
0.50 i
o ©
¢ 000 P o2 SR ED4 o -G °q;§a——%° S g ———
. e (=
o og e B8 T TOTg T oo
° s
-0.50 - T T * T
0.03 *
b °
o m
dg % o o 8 ° o o]
o o o % o® ° o0
2 0.00 o ™o . oo O ¥ "o % oo05n &
< - o °c: 9%00 oo ooobo B o° Q‘;
°© g “wd’° o ° % 00 ¢ °%0 "0
° ° o ® °
o) - o
-0.03 T T T T
0.06 N s o »* 5
o ]
p g o o ° ° 00 ()
a ] ° ° S ® °, ° 00 )
2 o.03 o 000 o 1 o
x w © o o® % . o0 o 0®%
3 % 9 §°B‘Po o © & oofp o0°°
. @ o & g Spe
o Uy o o g0
° N ° * G © o® @
0.00 T T T T
0.03
o
°g ° 0 o ®o o
b
9 e 12 ® g e el &&m%"oc’ff
— . “O O T O L-fu) O W~
o o D o o oY © o
= o ° foooo%mo ) ° & ooog;& o
o ° °
0 ° o
-0.03 T T T T
0.06
(=] () o
€ 0.03 - ° °
g . b o © &8%0 c;of’ “e ° © °t':', 80 o P go
° o5 ©3 *°°
[} o o o ©
. ® c§b°°°% Q:BWQ P %o o"’gooo oogoeoo
x
0.00 = . o) o o ¢
- -4 -1 2 -7 -4 -1 2
by—2/a; by—-2/8,
NO PRIOR CON C PRIOR ON C

x  POINT OUTSIDE RANGE
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Figure 24. Residuals between estimated and true item parameters and statistics comparing

estimated IRF's to true IRF's for the Method = with n
All results plotted against the true b-2/a. Test R2.
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All results plotted against the true b-2/a. Test R3.
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Figure 26. Residuals between estimated and true item parameters and statistics comparing

estimated IRF's to true IRF's for the Method = with no prior on ¢ and the Method P with a prior on ¢.
All results plotted against the true b-2/a. Test R4.
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Figure 27. Test R1. Prior on ¢. Comparison of parameters and IRF’s for calibration with N .
equal to 20 to calibration with N'. equal to 40 and for calibration with four items removed with N,
equal to 40 to calibration with all items with N'. equal to 40. Results plotted against true b-2/a.
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Figure 28. Test R1. No prior on ¢. Comparison of parameters estimated with all items and with
four items removed.
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Figure 29. Residuals between the item parameter estimates for Method 4 and Method = and a
plot of three test characteristic curves where the solid line is the true curve, the dotted line is Method
4 and the dashed line is Method =. Column 1 is for Test S1 and column 2 is for Test S2.
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Figure 30. Residuals between the item parameter estimates for Method 4. énd Method = and a
plot of three test characteristic curves where the solid line is the true curve, the dotted line is Method
4 and the dashed line is Method = . Column 1 is for Test S3 and column 2 is for Test S4.
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Figure 31. Residuals between the item parameter estimates for Method 4 and Method = and a
plot of three test characteristic curves where the solid line is the true curve, the dotted line is Method
4 and the dashed line is Method = . Column 1 is for Test R1 and column 2 is for Test R2.

51
ERIC

Aruitoxt provided by Eic:




1.0 1.0
™ (a ° c% R
I 0.0 T—eo-ummpeRAEE T l, 0.0 ——ebaimdiHd, © o
(g (g 5
-1.0 T T T -1.0 y . — r d
0.0 1.0 - 1.5 2.0 2.5 : 0.0 0.5 1.0 - 1.6 2.0 2.5
a, e,
1.0 1.0
3 3 0.0 ——-W i
' ‘1 Tk T
o 0 )
—10 T T '_10 L T
-3 -1 1 3 -3 -1 1 3
b, b,
°
ha i
(o )
I 0.0 = oo ooalRiioamuommrenme— | .
L] (V] ] v
) 0 1
-0.6 . ; -0.5 - . .
-7 -4 -1 2 -7 -4 -1 2
b,-2/a, b,-2/a, -
1.0 1.0
m &)
& &
5 0.8 & 0.8 4
3] 0
Q Q
E 0.6 —+ E 0.6
[+4 o .
S =]
O 0.4 A 3 0.4 - /
< <
o [+
= = L—
O 02 4 ©Q o2 4
; ;
141 ]
[ (=
0.0 T T 0o T —
-3 -1 1 3 -3 -1 1 3
0 ]
—_ METHOD 4 - METHOD = x  POINT OUTSIDE RaNGE
R3 R4

Figure 32. Residuals between the item parameter estimates for Method 4 and Method = and a
plot of three test characteristic curves where the solid line is the true curve, the dotted line is Method
4 and the dashed line is Method =. Column 1 is for Test R3 and column 2 is for Test R4.
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Figure 33. Residuals between the item parameter estimates for Method 4 and Method = and a
plot of three test characteristic curves where the solid line is the true curve, the dotted line is Metnod
4 and the dashed line is Method = . Column 1 is for MATH and column 2 is for VERBAL.




